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Abstract 
This paper describes a simple analysis procedure that 
transforms a set of beamline orbit data into a set of har-
monic orbits of first, second, and third order or higher.  
Each harmonic orbit can be studied individually to iden-
tify errors of the specific order with minimum interfer-
ence from other orders.  Effectively these are orbits 
caused by kicks, due to harmonic errors, propagated 
through linear lattice.  Examples from accelerator study 
will be presented.  The application and inherent limita-
tions of this analysis procedure are discussed. 

INTRODUCTION 
Orbit excitation is typically the means with which linear 
beamline optics is studied, be it lattice function measure-
ment or transverse coupling. The existences of higher 
order elements often make the analysis more complicated 
as they either cause higher order coupling effects or 
change focusing property. Unlike transfer lines, where 
usage of non-linear elements is limited, circular machines 
require the use of sextupoles extensively to control the 
chromaticity.  In Figure 1 are examples of horizontal 
plane orbit data as a function of voltage on the Booster 
extraction kicker. With kicker being in the vertical plane 
any horizontal position variation is an indication of skew 
coupling error and, in this example, it is clearly not linear. 

 
Figure 1. Horizontal beam position data versus Booster verti-
cal extraction kicker voltage. Plotted here are position data from 
profile monitor MW802 and BPM HP816 in the MI8 line. 

Other sources of first order errors, such as rolled cor-
rector dipoles or rolled Beam Position Monitors (BPMs), 
can interfere with coupling study.  Improperly scaled cor-
rector currents may be confused for focusing errors.  With 
harmonic decomposition these types of errors are left with 
first order orbits and not with higher order orbits. 

This procedure has been applied in the optics study of  
the Fermilab Booster to Main Injector 8-GeV (MI8) trans-

fer line and in the coupling study of Fermilab Recycler 
Ring. Examples of study results will also be presented. 

PRINCIPLE 
The idea of harmonic decomposition hinges on the as-
sumption that orbit perturbation due to harmonic errors is 
small and its cascading effect can be ignored, i.e. kick 
error is propagated on a linear lattice without incurring 
further effect from harmonic errors. A good assumption 
when errors are small and infrequent.   

With linear lattice the position response at 
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where 
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k
 is kick angle at the k-th corrector dipole location 

and the summation includes all corrector dipoles used in 
the study.  The response function 
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for circulating beam closed orbit and is defined as 
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for transfer line or first turn orbit.  The symbol Q in (1a) 
denotes tune of a circular machine.  Both i and k are indi-
ces to locations in the beamline and 

! 

f (i,k)  is zero if they 
point to locations not of the same plane. 

In actual beam study kicks applied at multiple locations 
are most often correlated. An angle θ , that is representa-
tive of the magnitude of orbit displacement, can be chosen 
such that 
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In the case of closed 3-bump study θ would be the kick 
from the first corrector dipole and 

! 

gi  would be zero every 
where except within the bump.   

The total kick error 
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 due to harmonic errors at the 

i-th location is: 

! 

" i = Ii,n # xi
n

n

$ = Ii,n # (gi # %)
n

n

$ = Ii,n # gi
n
# % n

n

$  , (3) 

where 
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 is the integrated strength of n-th order 

multipole.  For each order of n the choice of 
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B
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 would be 
either the normal or the skew component, depending on 
the kicked plane and the plane 
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i
 is in.  The geometrical 

factor dictates the plane a given multipole can contribute, 
while its orthogonal counterpart contributes to the other.  
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This fact is utilized in deriving equation (3) which shows 
only components with non-zero geometric factor 

! 

gi
n
" # n .  

The effects of multipoles are summarized in Table I. 
The position change at the j-th observable location due 

to harmonic errors at i-th location is: 
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with u being either horizontal or vertical position.  
The position at the j-th location is the linear response to 

all 
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k
 kicks from corrector dipoles used and to kicks from 

harmonic errors elsewhere: 
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where  
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c j,n = f ( j,i) " ki,n " gi
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The definition of 

! 

h j  is similar to that of 

! 

gi  except that the 
observation location j can be in either plane.  When 

! 

u j  is 
in the other plane 

! 

h j  becomes zero and equation (5) is 
further simplified to: 
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u j = " n # c j,n

n
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In a 3-bump study both 

! 

h j  and 

! 

gi  are zero every where 
except within the bump and the summation in equation 
(5a) is reduced to only a few locations.  

Equation (5) gives the basics of harmonic decomposi-
tion.  It says that the position response at j-th location is a 
polynomial function of θ.  Each coefficient 

! 

c j,n  is the sum 
of effects from kicks, due to n-th order error everywhere, 
propagated to j-th location on a linear lattice.  

During machine studies data is usually taken with re-
spect to the nominal orbit, not to the center of multipole 
fields.  The strength 
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I
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 in Equation (5), therefore, should 
include feed-down effects from all higher orders. 

APPLICATIONS 
Extracting harmonic orbit 
The result of second order polynomial fit to MI8 line data 
is shown in Figure 1 as dotted blue line and as text at the 
top.  Similar data from the Fermilab Recycler Ring study 
is shown in Figure 2, with third order polynomial fit and 
with vertical scale in 10s of microns, instead of mm. 
While the MI8 line data in Figure 1 does not appear to 
have third order content, the data in Figure 2 can not be 
described with a second order polynomial.   

When using polynomial coefficients of a specific order 
as positions in the harmonic orbit it is important that 

proper unit is assigned.  In Figure 2 the polynomial fit is 
with respect to current reading of corrector dipole H400 
and the units, therefore, are mm/amp for first order, 
mm/amp^2 for second order, and so on. 

 
Figure 2. Vertical plane position as a function of horizontal 
3-bump H402, at VP302A and VP617 locations. H400 current 
reading is shown as horizontal axis.  

Table I Kick errors due to magnetic multipoles. 
Harmonic 
components 

Orbit 
Horizontal 

Orbit 
Vertical 

quadrupole In-plane In-plane 
sextupole In-plane Coupling 
Octupole In-plane In-plane 
Decapole In-plane Coupling 
skew quadrupole coupling Coupling 
skew sextupole coupling In-plane 
skew octupole coupling Coupling 
skew decapole coupling In-plane 

Applying harmonic orbit for analysis 
A quick reference to the effects of multipole fields is 
shown in Table I.  Depending on the displacement plane 
and the order of multipole the effect can alternate between 
kick errors in the same plane and cross-plane coupling.  If 
the purpose is to study the normal sextupole or decapole 
component vertical plane orbit displacement is desirable.  
On the other hand, horizontal displacement is the choice 
for studying skew multipoles.  The effect of normal octu-
pole error is always in the plane of primary displacement. 

DATA EXAMPLES 
MI8 transfer line 
Figure 3 shows both horizontal and vertical second order 



harmonic orbits from a recent MI8 transfer line study [1].  
The purpose was to find evidences of higher order field 
errors within the extraction septum magnet MP02, of the 
Fermilab Booster Ring.  Using vertical extraction kickers 
to change beam position through the septum magnet the 
downstream beamline orbit data was taken and analyzed.  
A vertical displacement of 5.6 mm at MP02 is expected 
for 1 KV change in the extraction kicker setting.  In either 
plane, matching the observed second order harmonic orbit 
requires placing a single kick at the extraction septum.  
The calculation, shown in magenta trace, describes a free 
oscillation downstream of MP02.  This is clearly a signa-
ture of second order error.   

 
Figure 3. Second order harmonic orbits from MI8 transfer line 
data.  At the bottom is for horizontal plane and top for vertical 
plane.  The extraction septum magnet location is marked by the 
label on either plots. 

 
Figure 4. From top are first order (a), second order (b), and  
third order (c) vertical plane harmonic orbits from Recycler 
Ring study using horizontal 3-bump at 402 location.   

Recycler Ring data  
Figure 4 shows vertical plane harmonic orbits of first, 
second, and third order from Recycler Ring 3-bump orbit 
study [2].  These are vertical plane responses to horizontal 
displacement at 402 location and are the signatures of 
skew multipole errors.  Indicated by labels on each plot 
are locations found by MICADO/COCU [3] orbit correc-
tion procedure to be the likely kick sources.  The magenta 
traces are orbits calculated by modeling program which 

incorporated these kick sources.  Most of these error loca-
tions are believed to be fictitious. The use of closed 3-
bump practically eliminated the effect from harmonic 
error anywhere outside of the 3-bump region.  In all three 
plots location 402 was implicated as source of kick and 
this is exactly what the analysis is looking for. 

LIMITATIONS 
Resolution 
The effectiveness of harmonic analysis depends on the 
resolution of position monitors and the magnitudes of 
error fields.  In the MI8 line data shown in Figure 1 the 
position resolution is in hundred of microns.  The corre-
sponding errors in sextupole and skew sextupole field 
turned out to be quite large and the analysis worked.  For 
Recycler Ring data shown in Figure 2, the position reso-
lution is in the range of 10 microns and the position varia-
tion throughout the data set is 100 microns or less.  The 
analysis worked out as well.  In fact, the Recycler Ring 
Lambertson magnets had been suspected of field errors.  
However, the analysis was not feasible until the upgrade 
of its BPM system. 

Closed orbit stability 
The procedure of decomposition requires a set of orbit 
data, taken sequentially.  This set of position data, one 
monitor at a time, is fitted to a polynomial of certain order 
to derive harmonic orbits.  Unintended machine orbit 
variation could bias the fitting algorithm and introduce 
fictitious harmonic component of any order.  This poten-
tially can cause false alarm and confusion.  Random orbit 
motion due to drifting dipole power supply currents is 
discussed in reference [2]. 

CONCLUSION 
Harmonic decomposition is a simple concept and has al-
ready been shown to be a useful tool in the search for 
field error.  The technique is not by any means the equiva-
lent of a precision field measurement. The ability to see 
the higher order effect depends on the resolution of BPM 
system and the stability of the machine orbit. Recent im-
provement of the Recycler Ring BPM system [4] is a suc-
cess story both in instrumentation engineering and in its 
application for orbit data analysis. 
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